When are two formal theories of broadly logical concepts, such as truth, equivalent? The paper investigates a case study, involving two well-known variants Kripke-Feferman truth. The first, KF+CONS, features a consistent but partial truth predicate. The second, KF+COMP, an inconsistent but complete truth predicate. It is well-known that the two truth predicates are dual to each other. We show that this duality reveals a much stricter correspondence between the two theories: they are intertraslatable. Intertranslatability under natural assumptions coincides with definitional equivalence, and is arguably the strictest notion of theoretical equivalence different from logical equivalence. The case of KF+CONS and KF+COMP raises a puzzle: the two...