La technique des tests de Monte Carlo ((MC; Dwass (1957), Barnard (1963)) constitue une méthode attrayante qui permet de construire des tests exacts fondés sur des statistiques dont la distribution exacte est difficile à calculer par des méthodes analytiques mais peut être simulée, pourvu que cette distribution ne dépende pas de paramètres de nuisance. Nous généralisons cette méthode dans deux directions: premièrement, en considérant le cas où le test de Monte Carlo est construit à partir de réplications échangeables d'une variable aléatoire dont la distribution peut comporter des discontinuités; deuxièmement, en étendant la méthode à des statistiques dont la distribution dépend de paramètres de nuisance (tests de Monte Carlo maximisés, MMC...
When we study the properties of a test procedure, two aspects are of prime importance. Firstly, we w...
In this paper, we use Monte Carlo (MC) testing techniques for testing linearity against smooth trans...
We consider a statistical test whose p value can only be approximated using Monte Carlo simulations....
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method...
Bootstrap Methods in Regression Models by Emmanuel Flachaire In practice, we rarely know the true p...
Dans cette thèse, nous étudions des tests du type : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U ...
Monte Carlo methods are now an essential part of the statistician’s toolbox, to the point of being m...
One of the main problems of statistical inference in Structural Equation Modeling (SEM) is the overa...
Abstract. Conventional procedures for Monte Carlo and bootstrap tests require that B, the number of ...
Small samples and sparse cell frequencies cause major problems for statistical modelling with categ...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Bootstrap procedures for testing equality of robust means in the one-, two-, and multi-sample proble...
This article proposes a new test that is consistent, achieves correct asymptotic size, and is locall...
participants at a number of seminars and conferences at which the paper was presented. This paper co...
Testing in the presence of nuisance parameters is a problem often faced by researchers; consequently...
When we study the properties of a test procedure, two aspects are of prime importance. Firstly, we w...
In this paper, we use Monte Carlo (MC) testing techniques for testing linearity against smooth trans...
We consider a statistical test whose p value can only be approximated using Monte Carlo simulations....
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method...
Bootstrap Methods in Regression Models by Emmanuel Flachaire In practice, we rarely know the true p...
Dans cette thèse, nous étudions des tests du type : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U ...
Monte Carlo methods are now an essential part of the statistician’s toolbox, to the point of being m...
One of the main problems of statistical inference in Structural Equation Modeling (SEM) is the overa...
Abstract. Conventional procedures for Monte Carlo and bootstrap tests require that B, the number of ...
Small samples and sparse cell frequencies cause major problems for statistical modelling with categ...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Bootstrap procedures for testing equality of robust means in the one-, two-, and multi-sample proble...
This article proposes a new test that is consistent, achieves correct asymptotic size, and is locall...
participants at a number of seminars and conferences at which the paper was presented. This paper co...
Testing in the presence of nuisance parameters is a problem often faced by researchers; consequently...
When we study the properties of a test procedure, two aspects are of prime importance. Firstly, we w...
In this paper, we use Monte Carlo (MC) testing techniques for testing linearity against smooth trans...
We consider a statistical test whose p value can only be approximated using Monte Carlo simulations....