We approach the social choice problem as one of optimal statistical inference. If individual voters or judges observe the true order on a set of alternatives with error, then it is possible to use the set of individual rankings to make probability statements about the correct social order. Given the posterior distribution for orders and a suitably chosen loss function, an optimal order is one that minimises expected posterior loss. The paper develops a statistical model describing the behaviour of judges, and discusses Markov Chain Monte Carlo estimation. We also discuss criteria for choosing the appropriate loss functions. We apply our methods to a well-known problem: determining the correct ranking for figure skaters competing at the Oly...