Knowledge discovery from data is a process that aims to extract potentially useful knowledge hidden in large databases. Current works, in order to evaluate extracted patterns use interestingness measures. Such measures of interestingness are divided into objective measures that depend only on the structure of a pattern and the underlying data used in the discovery process, and the subjective measures that also depend on the class of users who examine the pattern. However, it remains difficult to select relevant models according domain expert knowledge and the lack of formalism in knowledge expression prevents to compare expert knowledge to extracted patterns. We present KEOPS approach based on a method which use expert knowledge during a da...
Dans cette thèse, nous présentons notre méthodologie de la connaissance interactive et itérative pou...
A data mining (DM) process involves multiple stages. A simple, but typical, process might include pr...
L'extraction de connaissances à partir de données vise à extraire des motifs contenus dans des entre...
International audienceThis paper deals with knowledge integration in a data mining process. We sugge...
International audienceThis paper presents the KEOPS data mining methodology centered on domain knowl...
International audienceThis paper presents the KEOPS data mining methodology centered on domain knowl...
La recherche de règles d’association intéressantes est un domaine important et actif en fouille de d...
L extraction automatique de connaissances à partir des données peut être considérée comme la découve...
The work realised within the framework of this thesis relates to the retrieval of knowledge in trans...
The continuous progress of information extraction (IE) techniques has led to the construction of lar...
A data mining (DM) process involves multiple stages. A simple, but typical, process might in-clude p...
A data mining (DM) process involves multiple stages. A simple, but typical, process might include pr...
The process of collecting and analyzing data to answer predictive, explanatory, and decision-making ...
Numerous methods of Knowledge Discovery in Databases (KDD) produce results in the form of rules. Rul...
Dans cette thèse, nous présentons notre méthodologie de la connaissance interactive et itérative pou...
A data mining (DM) process involves multiple stages. A simple, but typical, process might include pr...
L'extraction de connaissances à partir de données vise à extraire des motifs contenus dans des entre...
International audienceThis paper deals with knowledge integration in a data mining process. We sugge...
International audienceThis paper presents the KEOPS data mining methodology centered on domain knowl...
International audienceThis paper presents the KEOPS data mining methodology centered on domain knowl...
La recherche de règles d’association intéressantes est un domaine important et actif en fouille de d...
L extraction automatique de connaissances à partir des données peut être considérée comme la découve...
The work realised within the framework of this thesis relates to the retrieval of knowledge in trans...
The continuous progress of information extraction (IE) techniques has led to the construction of lar...
A data mining (DM) process involves multiple stages. A simple, but typical, process might in-clude p...
A data mining (DM) process involves multiple stages. A simple, but typical, process might include pr...
The process of collecting and analyzing data to answer predictive, explanatory, and decision-making ...
Numerous methods of Knowledge Discovery in Databases (KDD) produce results in the form of rules. Rul...
Dans cette thèse, nous présentons notre méthodologie de la connaissance interactive et itérative pou...
A data mining (DM) process involves multiple stages. A simple, but typical, process might include pr...
L'extraction de connaissances à partir de données vise à extraire des motifs contenus dans des entre...