This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in estimating hidden states from an historic of observations over time in a given stochastic model. The considered models include the popular Hidden Markov Chain models and the Jump Markov State Space Systems; in addition, the filtering problem is addressed under a general form, that is to say we consider the mono- and multi-object filtering problems. The latter one is addressed in the Random Finite Sets and Probability Hypothesis Density contexts. First, we focus on the class of particle filtering algorithms, which include essentially the sequential importance sampling and auxiliary particle filter algorithms. We explore the recursive loops for ...
The problem of multiple-object tracking consists in the recursive estimation ofthe state of several ...
Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui t...
We are interested in the addition of uncertainty in hidden Markov models. The inference is made in a...
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in e...
Cette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'o...
This thesis is devoted to the restoration problem and the parameter estimation by filtering in the t...
Cette thèse est consacrée à la restauration et l'estimation des paramètres par filtrage dans les mod...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
“Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic...
This thesis is dedicated to inference problems in hidden Markov models. The first part is devoted to...
This book discusses state estimation of stochastic dynamic systems from noisy measurements, specific...
Abstract—Random Finite Sets (RFS) are recent tools for addressing the multi-object filtering problem...
This document is dedicated to inference problems in hidden Markov models. The first part is devoted ...
Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of wei...
Dans cette thèse, nous nous intéressons à l'estimation de paramètres dans les chaînes de Markov cach...
The problem of multiple-object tracking consists in the recursive estimation ofthe state of several ...
Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui t...
We are interested in the addition of uncertainty in hidden Markov models. The inference is made in a...
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in e...
Cette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'o...
This thesis is devoted to the restoration problem and the parameter estimation by filtering in the t...
Cette thèse est consacrée à la restauration et l'estimation des paramètres par filtrage dans les mod...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
“Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic...
This thesis is dedicated to inference problems in hidden Markov models. The first part is devoted to...
This book discusses state estimation of stochastic dynamic systems from noisy measurements, specific...
Abstract—Random Finite Sets (RFS) are recent tools for addressing the multi-object filtering problem...
This document is dedicated to inference problems in hidden Markov models. The first part is devoted ...
Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of wei...
Dans cette thèse, nous nous intéressons à l'estimation de paramètres dans les chaînes de Markov cach...
The problem of multiple-object tracking consists in the recursive estimation ofthe state of several ...
Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui t...
We are interested in the addition of uncertainty in hidden Markov models. The inference is made in a...