Les modèles de chaînes de Markov cachées ou plus généralement ceux de Feynman-Kac sont aujourd'hui très largement utilisés. Ils permettent de modéliser une grande diversité de séries temporelles (en finance, biologie, traitement du signal, ...) La complexité croissante de ces modèles a conduit au développement d'approximations via différentes méthodes de Monte-Carlo, dont le Markov Chain Monte-Carlo (MCMC) et le Sequential Monte-Carlo (SMC). Les méthodes de SMC appliquées au filtrage et au lissage particulaires font l'objet de cette thèse. Elles consistent à approcher la loi d'intérêt à l'aide d'une population de particules définies séquentiellement. Différents algorithmes ont déjà été développés et étudiés dans la littérature. Nous raffino...
Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of wei...
We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear s...
We consider a method for approximate inference in hidden Markov models (HMMs). The method circum-ven...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis is composed of two parts. The first part focuses on Sequential Monte Carlo samplers, a f...
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as par...
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carl...
Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential Markov chain Mo...
Dans une première partie théorique, nous nous penchons sur une analyse rigoureuse des performances d...
Sequential Monte Carlo (SMC) methods have demonstrated a strong potential for inference on the state...
Feynman-Kac models (which generalize hidden Markov models) are nowadays widely used as they allow to...
This thesis is based on four papers (A-D) treating filtering, smoothing, and maximum likelihood (ML)...
Les travaux présentés dans cette thèse portent sur l'analyse et l'application de méthodes de Monte C...
Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of wei...
We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear s...
We consider a method for approximate inference in hidden Markov models (HMMs). The method circum-ven...
Hidden Markov chain models or more generally Feynman-Kac models are now widely used. They allow the ...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) an...
This thesis is composed of two parts. The first part focuses on Sequential Monte Carlo samplers, a f...
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as par...
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carl...
Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential Markov chain Mo...
Dans une première partie théorique, nous nous penchons sur une analyse rigoureuse des performances d...
Sequential Monte Carlo (SMC) methods have demonstrated a strong potential for inference on the state...
Feynman-Kac models (which generalize hidden Markov models) are nowadays widely used as they allow to...
This thesis is based on four papers (A-D) treating filtering, smoothing, and maximum likelihood (ML)...
Les travaux présentés dans cette thèse portent sur l'analyse et l'application de méthodes de Monte C...
Sequential Monte Carlo methods are a family of computational algorithms which use an ensemble of wei...
We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear s...
We consider a method for approximate inference in hidden Markov models (HMMs). The method circum-ven...