Given a p-torsion representation of the absolute Galois group of a p-adic field, M. Kisin defines a moduli space, which was named Kisin variety afterwards by G. Pappas and M. Rapoport. These varieties were first introduced in order to prove several modularity results on Galois representations. They were also used for constructing certain Galois deformation rings and computing some of them. Besides, they were involved in a recent work aiming at defining an algebraic structure on the stack of torsion Galois representations. It turns out that these varieties are formally similar to affine Deligne-Lusztig varieties. In particular their definition extends to the framework of reductive groups. In this thesis, we study the dimension of some Kisin ...