The article develops a correctness theory of truth (CTT) for semantic information. After the introduction, in section two, semantic information is shown to be translatable into propositional semantic information (i). In section three, i is polarised into a query (Q) and a result (R), qualified by a specific context, a level of abstraction and a purpose. This polarization is normalised in section four, where [Q + R] is transformed into a Boolean question and its relative yes/no answer [Q + A]. This completes the reduction of the truth of i to the correctness of A. In sections five and six, it is argued that (1) A is the correct answer to Q if and only if (2) A correctly saturates (in a Fregean sense) Q by verifying and validating it (in the ...