This paper analyzes a model of social learning in a social network. Agents decide whether or not to adopt a new technology with unknown payoffs based on their prior beliefs and the experiences of their neighbors in the network. Using a mean-field approximation, we prove that the diffusion process always has at least one stable equilibrium, and we examine the dependence of the set of equilibria on the model parameters and the structure of the network. In particular, we show how first and second order stochastic dominance shifts in the degree distribution of the network impact diffusion. We find that the relationship between equilibrium diffusion levels and network structure depends on the distribution of payoffs to adoption and the distribut...