To understand the fundamental physical processes important for the evolution of solar rotation and distribution of chemical species, we provide theoretical predictions for particle mixing and momentum transport in the stably stratified tachocline. By envisioning that turbulence is driven externally in the tachocline (e.g. by plume penetration), we compute the amplitude of turbulent flow, turbulent particle diffusivities, and eddy viscosity, by incorporating the effect of a strong radial differential rotation and stable stratification. We identify the different roles that the shear flow and stable stratification play in turbulence regulation and transport. Particle transport is found to be severely quenched due to stable stratification as we...