The aim of this thesis is to take into account the heterogeneity, the anisotropy and the uncertainties within 3D numerical simulation of elastic waves propagation. Firstly, the elasticity tensor field is modeled by means of a stochastic tensor-valued field. Its construction is generalized from the model of Soize [2008]. Hence, our model preserves principle properties of the former : a small set of parameters controlling the whole dispersion and the characteristic size of spatial variability, a local behavior being a priori arbitrary anisotropic (triclinic anisotropy) andothers essential mathematical properties. Moreover, a new parameter is added in order to impose a desired anisotropy mean level. Secondly, we carry out adaptations of an exi...