International audienceStatistical methods to bias correct global or regional climate model output are now common to get data closer to observations in distribution. However, most bias correction (BC) methods work for one variable and one location at a time and basically reproduce the temporal structure of the models. The intervariable, spatial, and temporal dependencies of the corrected data are usually poor compared to observations. Here, the authors propose a novel method for multivariate BC. The empirical copula–bias correction (EC–BC) combines a one-dimensional BC with a shuffling technique that restores an empirical multidimensional copula. Several BC methods are investigated and compared to high-resolution reference data over the Fren...