We consider non-atomic network congestion games with heterogeneous players where the latencies of the paths are subject to some bounded deviations. This model encompasses several well-studied extensions of the classical Wardrop model which incorporate, for example, risk-aversion, altruism or travel time delays. Our main goal is to analyze the worst-case deterioration in social cost of a deviated Nash flow (i.e., for the perturbed latencies) with respect to an original Nash flow. We show that for homogeneous players deviated Nash flows coincide with approximate Nash flows and derive tight bounds on their inefficiency. In contrast, we show that for heterogeneous populations this equivalence does not hold. We derive tight bounds on the ineffic...