Often, real-world problems are of the gray-box type. It has been shown that the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is in principle capable of exploiting such a Gray-Box Optimization (GBO) setting using linkage models that capture dependencies between problem variables, resulting in excellent performance and scalability on both benchmark and real-world problems that allow for partial evaluations. However, linkage models proposed for RV-GOMEA so far cannot explicitly capture overlapping dependencies. Consequently, performance degrades if such dependencies exist. In this paper, we therefore introduce various ways of using conditional linkage models in RV-GOMEA. Their use is compared to that of non-conditiona...