Exploiting a problem’s structure to arrive at the most efficient optimization algorithm is key in many optimization disciplines. In evolutionary computation, especially for solving discrete optimization problems from a black-box optimization (BBO) perspective, linkage learning is an important research line because if important linkages are disrupted during variation, optimization will not proceed efficiently [4]. Estimation-of-distribution algorithms (EDAs) are well-k nown for building and using models to exploit problem structure [2, 3]. Models in EDAs represent probability distributions and linkage information is processed via probabilistic dependency relations within these distributions. Although EDAs can be very powerful, estimating co...