We propose a model of discrete time dynamic congestion games with atomic players and a single source-destination pair. The latencies of edges are composed of free-flow transit times and possible queuing time due to capacity constraints. We give a precise description of the dynamics induced by the individual strategies of players and of the corresponding costs, either when the traffic is controlled by a planner, or when players act selfishly. In parallel networks, optimal and equilibrium behavior eventually coincide, but the selfish behavior of the initial players has consequences that cannot be undone and are paid by all future generations. In more general topologies, our main contributions are threefold. First, we illustrate a new dynamic ...