En este trabajo introduciremos una pequeña modificación en la definición de H-función parcial; estos son los morfismos en la categoría de H^˅-espacios y esta es la categoría dual de la categoría de las álgebras de Hilbert con supremo y morfismos, los ˅-homomorfismos algebraicos. Como una aplicación demostraremos que las H^˅-álgebras puras finitas están determinadas por su monoide de endomorfismos.Abstract. In this work we introduce a slight modification in the definition of H-partial function; these are the morphims in the category of H^˅-spaces and this category is the dual category of the category of Hilbert algebras with supremum and morphism, the algebraic ˅-homomorphisms. As an application we show that finite pure H^˅-algebras are d...
A b s t r a c t. We introduce the variety of Hilbert algebras with a modal operator , called H-algeb...
We study the Hilbert function of certain projective monomial curves. We determine which of our curve...
Hilbert (1923) ha sido el primero en observar que un cierto conjunto de fórmulas del cálculo preposi...
summary:We modify slightly the definition of $H$-partial functions given by Celani and Montangie (20...
International audienceA Hilbertian (co)algebra is defined as a (co)semigroup object in the monoidal ...
We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variet...
In this paper, we demonstrate notion of -morphism of Hilbert H-modules and describe some properties...
One approach to the study of multi-variate operator theory is through the study of Hilbert modules, ...
Hilbert functions developed from classical mathematical concepts. In algebraic geometry, the coeffic...
Distributive Hilbert algebras with infimum, or DH^-algebras for short, are algebras with implication...
[EN] Let X be a topological space, if we have a homomorphism Phi of C(X) in R, we denote by C(X) the...
. Let C denote the category of Hilbert modules which are similar to contractive Hilbert modules. It ...
International audienceWe prove a categorical duality between a class of abstract algebras of partial...
In this work, the notion of a partial representation of a Hopf algebra is introduced and its relatio...
Generalized Esakia spaces are the topological duals of bounded implicative semilattices in the duali...
A b s t r a c t. We introduce the variety of Hilbert algebras with a modal operator , called H-algeb...
We study the Hilbert function of certain projective monomial curves. We determine which of our curve...
Hilbert (1923) ha sido el primero en observar que un cierto conjunto de fórmulas del cálculo preposi...
summary:We modify slightly the definition of $H$-partial functions given by Celani and Montangie (20...
International audienceA Hilbertian (co)algebra is defined as a (co)semigroup object in the monoidal ...
We introduce the variety of Hilbert algebras with a modal operator , called H -algebras. The variet...
In this paper, we demonstrate notion of -morphism of Hilbert H-modules and describe some properties...
One approach to the study of multi-variate operator theory is through the study of Hilbert modules, ...
Hilbert functions developed from classical mathematical concepts. In algebraic geometry, the coeffic...
Distributive Hilbert algebras with infimum, or DH^-algebras for short, are algebras with implication...
[EN] Let X be a topological space, if we have a homomorphism Phi of C(X) in R, we denote by C(X) the...
. Let C denote the category of Hilbert modules which are similar to contractive Hilbert modules. It ...
International audienceWe prove a categorical duality between a class of abstract algebras of partial...
In this work, the notion of a partial representation of a Hopf algebra is introduced and its relatio...
Generalized Esakia spaces are the topological duals of bounded implicative semilattices in the duali...
A b s t r a c t. We introduce the variety of Hilbert algebras with a modal operator , called H-algeb...
We study the Hilbert function of certain projective monomial curves. We determine which of our curve...
Hilbert (1923) ha sido el primero en observar que un cierto conjunto de fórmulas del cálculo preposi...