International audienceThe paper provides a spatio-temporal change detection framework for the analysis of image time series. In this framework, the detection of changes in time is addressed at the image level by using a matrix of cross-dissimilarities computed upon wavelet and curvelet image features. This makes possible identifying the acquisitions-of-interest: the acquisitions that exhibit singular behavior with respect to their neighborhood in the time series and those that are representatives of some stationary behavior. These acquisitions-of-interest are compared at the pixel level in order to detect spatial changes characterizing the evolution of the time series. Experiments carried out over ERS and TerraSAR-X time series highlight th...