For a continuous treatment, the generalised propensity score (GPS) is defined as the conditional density of the treatment, given covariates. GPS adjustment may be implemented by including it as a covariate in an outcome regression. Here, the unbiased estimation of the dose-response function assumes correct specification of both the GPS and the outcome-treatment relationship. This paper introduces a machine learning method, the 'Super Learner', to address model selection in this context. In the two-stage estimation approach proposed, the Super Learner selects a GPS and then a dose-response function conditional on the GPS, as the convex combination of candidate prediction algorithms. We compare this approach with parametric implementations of...