Influenced by Higham et al. (2003), several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. In this paper we will develop a new explicit method, called the truncated EM method, for the nonlinear SDE dx(t)=f(x(t))dt+g(x(t))dB(t)dx(t)=f(x(t))dt+g(x(t))dB(t) and establish the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition View the MathML sourcexTf(x)+p−12∣g(x)∣2≤K(1+∣x∣2). The type of convergence specifically...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Influenced by Higham et al. (2003), several numerical methods have been developed to study the stron...
Influenced by Higham et al. (2003), several numerical methods have been developed to study the stron...
Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the...
Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the...
Recently, Mao [13] developed a new explicit method, called the truncated Euler- Maruyama (EM) method...
Recently, Mao [13] developed a new explicit method, called the truncated Euler- Maruyama (EM) method...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Influenced by Higham et al. (2003), several numerical methods have been developed to study the stron...
Influenced by Higham et al. (2003), several numerical methods have been developed to study the stron...
Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the...
Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the...
Recently, Mao [13] developed a new explicit method, called the truncated Euler- Maruyama (EM) method...
Recently, Mao [13] developed a new explicit method, called the truncated Euler- Maruyama (EM) method...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...
Traditional finite-time convergence theory for numerical methods applied to stochastic differential ...