This paper argues that common intuitions regarding a) the specialness of 'use-novel' data for confirmation, and b) that this specialness implies the 'no-double-counting rule', which says that data used in 'constructing' (calibrating) a model cannot also play a role in confirming the model's predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of confirmation of model predictions. We show that, on the Bayesian account of confirmation, and also on the standard Classical hypothesis-testing account, claims a) and b) are not generally true, but for some s...