Athletes commonly use altitude exposure in an attempt to improve their aerobic performance at sea level. Altitude exposure enhances erythropoiesis and iron-dependent oxidative and glycolytic enzyme production, for this reason, athletes must maintain a healthy iron balance at altitude. A negative iron balance at altitude may limit such physiological adaptations, potentially reducing the performance benefits of altitude exposure. This thesis examined the regulation of iron metabolism during acute (~31 min, Study One) and prolonged altitude exposure (14 days, Study Two). Finally, Study Three examined how daily oral iron supplementation influenced haemoglobin mass (Hbmass) and iron parameter responses to prolonged, moderate altitude exposure in...