Lagringskapaciteten i ett litet spiking Hopfieldnätverk undersöks med hjälp av två parametrar som styr resistansen och inhibitionen hos de synaptiska kopplingarna. Det är motiverat av möjligheten att skapa större associativa nätverk från små nätverkskluster. Den här typen av nätverksarkitekturer har observerats i naturen och skulle kunna vara grunden till framtida applikationer. Undersökningen är genomförd med hjälp av simulatorer, neuronmodeller av typen integrate-and-fire och statiska synapser. Flera olika typer av binäramönster används för att ge en detaljerad analys av lagringskapaciteten. De undersökta parametrarna har inverkan på lagringskapaciteten hosnätverket. Även skillnader i kapacitet mellan olika mönster är observerat.The stora...
We analyze the storage capacity of the Hopfield model with spatially correlated patterns ¸ i (i.e....
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary...
The Little-Hopfield network is an auto-associative computational model of neural memory storage and ...
utoassociative memory models have been an at-tractive area for researchers lately. Their potential f...
Hebbian learning based neural network learning rules when implemented on hardware, store their synap...
Das Hopfield Modell ist ein neuronales Netzwerk und kann als assoziativer Speicher genutzt werden. I...
A modular Recurrent Bayesian Confidence PropagatingNeural Networks (BCPNN) with two synaptic time tr...
Denna avhandling i datalogi föreslår modeller för hur vissa beräkningsmässiga uppgifter kan utföras ...
The associative memory of the brain is thought to be well modelled by attractorneural networks. A so...
Neural networks have become increasingly adopted in society over the last few years. As neural netwo...
Med hjälp av ett experiment och minnesspelet Memory testades huruvida survival processing leder till...
As one of our most complex and least understood organs, the brain constitutes a major area of resear...
SpiNNaker is a neuromorphic hardware devised to simulate SNNs effectively.This paper examines how th...
In this thesis, the storage capacities of the Bidirectional Associative Memories (BAM) and the Hopfi...
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analy...
We analyze the storage capacity of the Hopfield model with spatially correlated patterns ¸ i (i.e....
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary...
The Little-Hopfield network is an auto-associative computational model of neural memory storage and ...
utoassociative memory models have been an at-tractive area for researchers lately. Their potential f...
Hebbian learning based neural network learning rules when implemented on hardware, store their synap...
Das Hopfield Modell ist ein neuronales Netzwerk und kann als assoziativer Speicher genutzt werden. I...
A modular Recurrent Bayesian Confidence PropagatingNeural Networks (BCPNN) with two synaptic time tr...
Denna avhandling i datalogi föreslår modeller för hur vissa beräkningsmässiga uppgifter kan utföras ...
The associative memory of the brain is thought to be well modelled by attractorneural networks. A so...
Neural networks have become increasingly adopted in society over the last few years. As neural netwo...
Med hjälp av ett experiment och minnesspelet Memory testades huruvida survival processing leder till...
As one of our most complex and least understood organs, the brain constitutes a major area of resear...
SpiNNaker is a neuromorphic hardware devised to simulate SNNs effectively.This paper examines how th...
In this thesis, the storage capacities of the Bidirectional Associative Memories (BAM) and the Hopfi...
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analy...
We analyze the storage capacity of the Hopfield model with spatially correlated patterns ¸ i (i.e....
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary...
The Little-Hopfield network is an auto-associative computational model of neural memory storage and ...