V předložené práci studujeme vyjádření chyb kvadraturních a kubaturních formulací pomocí Peanova a Sardova jádra. Nejprve je definováno Peanovo jádro kvadraturní formule a jeho zobecnění, obojí je ukázáno na příkladech. Následně je využito Peanova jádra i jeho zobecnění k nalezení optimální kvadraturní formule v Nikolského smyslu. Dále jsou definována Sardova jádra kubaturní formule na čtverci a krychli. Pro oba případy je podrobně popsána konstrukce Rombergovy kubaturní formule a jejích Sardových jader. Následně je využito Sardových jader lichoběžníkového pravidla a Rombergovy kubaturní formule k odhadům chybových členů těchto kubatur.In the present work we study the expressing of errors of quadrature and cubature formulae by Peano and Sar...
Peano kernels are most popular for their application in constructing integration rules and (perhaps)...
The corrected quadrature rules are considered and the estimations of error involving the second deri...
AbstractFor the error R2n + 1GK of the Gauss-Kronrod quadrature formula Q2n + 1GK, we prove the prec...
In the present work we study the expressing of errors of quadrature and cubature formulae by Peano a...
skij's type. fo ula fo the s ua e a d the u e defi ed. The e a e i detail des i ed Ro e g's a d Ro e...
Nazev prace: Poanovo jadro kvadraturni formula Autor: Pctra Valcsova Katedra (ustav): Katedra numcri...
Nazev prace: Poanovo jadro kvadraturni formula Autor: Pctra Valcsova Katedra (ustav): Katedra numcri...
AbstractIn the univariate case, there is a well-developed theory on the error estimation of the quad...
AbstractIn the univariate case, there is a well-developed theory on the error estimation of the quad...
The purpose of this paper is to point out essential consideration for com-puting tight bounds for th...
AbstractFor symmetric quadrature formulas, sharper error bounds are generated by a formulation of th...
We consider the representation of error functionals in numerical quadrature by the Peano kernel meth...
Abstract. In this paper we use the method of Reproducing Kernel and Gegenbauer polynomials for const...
We examine the method of reproducing kernel for constructing cubature formulae on the unit ball and...
AbstractFor symmetric quadrature formulas, sharper error bounds are generated by a formulation of th...
Peano kernels are most popular for their application in constructing integration rules and (perhaps)...
The corrected quadrature rules are considered and the estimations of error involving the second deri...
AbstractFor the error R2n + 1GK of the Gauss-Kronrod quadrature formula Q2n + 1GK, we prove the prec...
In the present work we study the expressing of errors of quadrature and cubature formulae by Peano a...
skij's type. fo ula fo the s ua e a d the u e defi ed. The e a e i detail des i ed Ro e g's a d Ro e...
Nazev prace: Poanovo jadro kvadraturni formula Autor: Pctra Valcsova Katedra (ustav): Katedra numcri...
Nazev prace: Poanovo jadro kvadraturni formula Autor: Pctra Valcsova Katedra (ustav): Katedra numcri...
AbstractIn the univariate case, there is a well-developed theory on the error estimation of the quad...
AbstractIn the univariate case, there is a well-developed theory on the error estimation of the quad...
The purpose of this paper is to point out essential consideration for com-puting tight bounds for th...
AbstractFor symmetric quadrature formulas, sharper error bounds are generated by a formulation of th...
We consider the representation of error functionals in numerical quadrature by the Peano kernel meth...
Abstract. In this paper we use the method of Reproducing Kernel and Gegenbauer polynomials for const...
We examine the method of reproducing kernel for constructing cubature formulae on the unit ball and...
AbstractFor symmetric quadrature formulas, sharper error bounds are generated by a formulation of th...
Peano kernels are most popular for their application in constructing integration rules and (perhaps)...
The corrected quadrature rules are considered and the estimations of error involving the second deri...
AbstractFor the error R2n + 1GK of the Gauss-Kronrod quadrature formula Q2n + 1GK, we prove the prec...