This paper aims at explaining that the key to understanding quantum mechanics (QM) is a perfect geometrical understanding of the spinor algebra that is used in its formulation. Spinors occur naturally in the representation theory of certain symmetry groups. The spinors that are relevant for QM are those of the homogeneous Lorentz group SO(3,1) in Minkowski space-time R 4 and its subgroup SO(3) of the rotations of three-dimensional Euclidean space R 3. In the three-dimensional rotation group the spinors occur within its representation SU(2). We will provide the reader with a perfect intuitive insight about what is going on behind the scenes of the spinor algebra. We will then use the understanding acquired to derive the free-space Dirac equa...