The set of m x n singular matrix pencils with normal rank at most r is an algebraic set with r + 1 irreducible components. These components are the closure of the orbits (under strict equivalence) of r 1 matrix pencils which are in Kronecker canonical form. In this paper, we provide a new explicit description of each of these irreducible components which is a parametrization of each component. Therefore one can explicitly construct any pencil in each of these components. The new description of each of these irreducible components consists of the sum of r rank-1 matrix pencils, namely, a column polynomial vector of degree at most 1 times a row polynomial vector of degree at most 1, where we impose one of these two vectors to have degree zero...