Neste trabalho apresentaremos uma noção de traço para distribuições em um certo subespaço de D\'(Ω). Essa noção de traço fornece sentido para o problema de Dirichlet com a equação de Laplace na bola unitária, no caso em que a condição de contorno é uma distribuição qualquer, de modo que a fórmula integral de Poisson continua produzindo soluções para o problema. Apresentamos também um resultado de geração de semigrupos de operadores lineares sobre um espaço vetorial topológico localmente convexo. No caso em que este espaço é Fréchet, mostraremos que tal resultado generaliza o Teorema clássico de geração de semigrupos analíticos de operadores lineares contínuos sobre um espaço de Banach.In this work, we will present a notion of trace fo...
We characterize closed linear operators A, on a Banach space, for which the corresponding abstract C...
Neste trabalho, apresentamos uma introdução à Teoria de semigrupos analíticos de operadores lineare...
Many results, both from semigroup theory itself and from the applied sciences, are phrased in discip...
AbstractThe behavior of strongly continuous one-parameter semigroups of operators on locally convex ...
In this paper we study the convergence properties of the Crandall-Liggett sequence , for A a nonline...
AbstractA necessary and sufficient condition that a densely defined linear operator A in a sequentia...
Linear 2m-th order uniformly elliptic operators are shown to generate semigroups of bounded linear o...
El presente trabajo tiene por objeto dar una aplicación de la teoría abstracta de semigrupos de oper...
AbstractIn this paper, we consider the vector-valued Laplace transforms,r-times (r∈[0,∞)) integrated...
A standard model for pure fragmentation is subjected to an initial condition of Dirac-delta type. Re...
We study semigroups of convex monotone operators on spaces of continuous functions and their behavio...
This paper provides sharp lower estimates near the origin for the functional calculus F(−uA) of a ge...
Ours main purpose is the uniqueness problem for the diffusion operators on $L^\infty$. This work beg...
In the first chapter of the dissertation, is a brief introduction. Then in the second chapter, are s...
We study linear perturbations of analytic semigroups defined on a scale of Banach spaces. Fitting th...
We characterize closed linear operators A, on a Banach space, for which the corresponding abstract C...
Neste trabalho, apresentamos uma introdução à Teoria de semigrupos analíticos de operadores lineare...
Many results, both from semigroup theory itself and from the applied sciences, are phrased in discip...
AbstractThe behavior of strongly continuous one-parameter semigroups of operators on locally convex ...
In this paper we study the convergence properties of the Crandall-Liggett sequence , for A a nonline...
AbstractA necessary and sufficient condition that a densely defined linear operator A in a sequentia...
Linear 2m-th order uniformly elliptic operators are shown to generate semigroups of bounded linear o...
El presente trabajo tiene por objeto dar una aplicación de la teoría abstracta de semigrupos de oper...
AbstractIn this paper, we consider the vector-valued Laplace transforms,r-times (r∈[0,∞)) integrated...
A standard model for pure fragmentation is subjected to an initial condition of Dirac-delta type. Re...
We study semigroups of convex monotone operators on spaces of continuous functions and their behavio...
This paper provides sharp lower estimates near the origin for the functional calculus F(−uA) of a ge...
Ours main purpose is the uniqueness problem for the diffusion operators on $L^\infty$. This work beg...
In the first chapter of the dissertation, is a brief introduction. Then in the second chapter, are s...
We study linear perturbations of analytic semigroups defined on a scale of Banach spaces. Fitting th...
We characterize closed linear operators A, on a Banach space, for which the corresponding abstract C...
Neste trabalho, apresentamos uma introdução à Teoria de semigrupos analíticos de operadores lineare...
Many results, both from semigroup theory itself and from the applied sciences, are phrased in discip...