Compared with single-label and multi-label annotations, label distribution describes the instance by multiple labels with different intensities and accommodates to more-general conditions. Nevertheless, label distribution learning is unavailable in many real-world applications because most existing datasets merely provide logical labels. To handle this problem, a novel label enhancement method, Label Enhancement with Sample Correlations via low-rank representation, is proposed in this paper. Unlike most existing methods, a low-rank representation method is employed so as to capture the global relationships of samples and predict implicit label correlation to achieve label enhancement. Extensive experiments on 14 datasets demonstrate that th...