A principal step towards solving diverse perception problems is segmentation. Many algorithms benefit from initially partitioning input point clouds into objects and their parts. In accordance with cognitive sciences, segmentation goal may be formulated as to split point clouds into locally smooth convex areas, enclosed by sharp concave boundaries. This goal is based on purely geometrical considerations and does not incorporate any constraints, or semantics, of the scene and objects being segmented, which makes it very general and widely applicable. In this work we perform geometrical segmentation of point cloud data according to the stated goal. The data is mapped onto a graph and the task of graph partitioning is considered. We formulate ...