In recent years, proficiency in data science and machine learning (ML) became one of the most requested skills for jobs in both industry and academy. Machine learning algorithms typically require large sets of data to train the models and extensive usage of computing resources, both for training and inference. Especially for deep learning algorithms, training performances can be dramatically improved by exploiting Graphical Processing Units (GPUs). The needed skill set for a data scientist is therefore extremely broad, and ranges from knowledge of ML models to distributed programming on heterogeneous resources. While most of the available training resources focus on ML algorithms and tools such as TensorFlow, we designed a course for doctor...