L’analyse topologique des données (ATD) permet d’extraire une information riche des données structurées (telles que les graphes ou les séries temporelles) présentes dans les problèmes modernes d’apprentissage. Elle va représenter cette information sous forme de descripteurs dont font partie les diagrammes de persistance, qui peuvent être décrits comme des mesures ponctuelles supportées sur un demi-plan. À défaut d’être de simples vecteurs, les diagrammes de persistance peuvent néanmoins être comparés entre eux à l’aide de métriques d’appariement partiel. La similarité entre ces métriques et les métriques usuelles du transport optimal - un autre domaine des mathématiques - est connue de longue date, mais un lien formel entre ces deux domaine...
National audienceCet article porte sur le problème d'adaptation de domaines par transport optimal en...
The rising field of Topological Data Analysis (TDA) provides a new approach to learning from data th...
International audiencePersistence diagrams are efficient descriptors of the topology of a point clou...
Topological data analysis (TDA) allows one to extract rich information from structured data (such as...
International audienceDespite the obvious similarities between the metrics used in topological data ...
Topological data analysis (or TDA for short) consists in a set of methods aiming to extract topologi...
In the context of supervised Machine Learning, finding alternate representations, or descriptors, fo...
Topological data analysis (TDA) is a young field that has been rapidly growing over the last years ...
L’analyse topologique de donnés permet l’extraction générique et efficace de caractéristiques struct...
Computational topology has recently known an important development toward data analysis, giving birt...
Computational topology has recently known an important development toward data analysis, giving birt...
International audienceComputational topology has recently seen an important development toward data ...
Abstract. We define a new topological summary for data that we call the persistence land-scape. In c...
Topological Data Analysis (TDA) is a novel statistical technique, particularly powerful for the anal...
National audienceCet article porte sur le problème d'adaptation de domaines par transport optimal en...
The rising field of Topological Data Analysis (TDA) provides a new approach to learning from data th...
International audiencePersistence diagrams are efficient descriptors of the topology of a point clou...
Topological data analysis (TDA) allows one to extract rich information from structured data (such as...
International audienceDespite the obvious similarities between the metrics used in topological data ...
Topological data analysis (or TDA for short) consists in a set of methods aiming to extract topologi...
In the context of supervised Machine Learning, finding alternate representations, or descriptors, fo...
Topological data analysis (TDA) is a young field that has been rapidly growing over the last years ...
L’analyse topologique de donnés permet l’extraction générique et efficace de caractéristiques struct...
Computational topology has recently known an important development toward data analysis, giving birt...
Computational topology has recently known an important development toward data analysis, giving birt...
International audienceComputational topology has recently seen an important development toward data ...
Abstract. We define a new topological summary for data that we call the persistence land-scape. In c...
Topological Data Analysis (TDA) is a novel statistical technique, particularly powerful for the anal...
National audienceCet article porte sur le problème d'adaptation de domaines par transport optimal en...
The rising field of Topological Data Analysis (TDA) provides a new approach to learning from data th...
International audiencePersistence diagrams are efficient descriptors of the topology of a point clou...