We study distributed optimization in a cooperative multi-agent setting, where agents have to agree on the usage of shared resources and can communicate via a time-varying network to this purpose. Each agent has its own decision variables that should be set so as to minimize its individual objective function subject to local constraints. Resource sharing is modeled via coupling constraints that involve the non-positivity of the sum of agents’ individual functions, each one depending on the decision variables of one single agent. We propose a novel distributed algorithm to minimize the sum of the agents’ objective functions subject to both local and coupling constraints, where dual decomposition and proximal minimization are combined in an it...