This paper studies estimation of a panel data model with latent structures where individuals can be classified into different groups where slope parameters are homogeneous within the same group but heterogeneous across groups. To identify the unknown group structure of vector parameters, we design an algorithm called Panel-CARDS which is a systematic extension of the CARDS procedure proposed by Ke, Fan, and Wu (2015) in a cross section framework. The extension addresses the problem of comparing vector coefficients in a panel model for homogeneity and introduces a new concept of controlled classification of multidimensional quantities called the segmentation net. We show that the Panel-CARDS method identifies group structure asymptotically and co...