In this work, a new class of discrete models for the analysis of zero-modified count data has been introduced. The proposed class is composed of hurdle versions of the Poisson-Lindley, PoissonShanker, and Poisson-Sujatha baseline distributions, which are uniparametric Poisson mixtures that can accommodate different levels of overdispersion. Unlike the traditional formulation of zero-modified distributions, the primary assumption under hurdle models is that the positive observations are entirely represented by zero-truncated distributions. In the sense of extending the applicability of the theoretical models, it has also been developed a fixed-effects regression framework, in which the probability of zero-valued observations being generated ...