International audienceIn order to ensure more realistic design of nonlinear periodic structures, the collective dynamics of a coupled pendulums system is investigated under parametric uncertainties. A generic discrete analytical model combining the multiple scales method, the perturbation theory and a standing-wave decomposition is proposed and adapted to the presence of uncertainties. These uncertainties are taken into account through a probabilistic modeling implying that the stochastic parameters vary according to random variables of chosen probability density functions. The proposed model leads to a set of coupled complex algebraic equations written according to the number and positions of the uncertainties in the structure and numerica...