A single-stage procedure for the evaluation of tight bounds on the parameters of Hammerstein systems from output measurements affected by bounded errors is presented. The identification problem is formulated in terms of polynomial optimization, and relaxation techniques based on linear matrix inequalities are proposed to evaluate parameters bounds by means of convex optimization. The structured sparsity of the identification problem is exploited to reduce the computational complexity of the convex relaxed problem. Convergence proper ties, complexity analysis and advantages of the proposed technique with respect to previously published ones are discussed
In this paper, we consider the identification of linear systems, a priori known to be stable, from i...
In many practical situations, it is highly desirable to estimate an accurate mathematical model of a...
The estimation of the Feasible Parameter Set (FPS) for Hammerstein models in a worst-case setting is...
In this paper we present a procedure for the evaluation of bounds on the parameters of Hammerstein s...
Hammerstein system identification from measurements affected by bounded noise is considered in the p...
Set-membership identification of Hammerstein-Wiener models is addressed in the paper. First, it is s...
In this technical note we present a procedure for the identification of Hammerstein systems from mea...
Set-membership identification of dynamical systems is dealt with in this thesis. Differently from th...
In this paper the Set-membership Error-In-Variables (EIV) identification problem is considered, that...
Identification of linear systems, a priori known to be stable, from input output measurements corrup...
Set-membership identification of single-input single-output linear parameter varying models is consi...
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by tw...
The identification of Hammerstein models for nonlinear systems in considered in a worst-case setting...
In many practical situations, it is highly desirable to estimate an accurate mathematical model of a...
In this paper, we consider the identification of linear systems, a priori known to be stable, from i...
In many practical situations, it is highly desirable to estimate an accurate mathematical model of a...
The estimation of the Feasible Parameter Set (FPS) for Hammerstein models in a worst-case setting is...
In this paper we present a procedure for the evaluation of bounds on the parameters of Hammerstein s...
Hammerstein system identification from measurements affected by bounded noise is considered in the p...
Set-membership identification of Hammerstein-Wiener models is addressed in the paper. First, it is s...
In this technical note we present a procedure for the identification of Hammerstein systems from mea...
Set-membership identification of dynamical systems is dealt with in this thesis. Differently from th...
In this paper the Set-membership Error-In-Variables (EIV) identification problem is considered, that...
Identification of linear systems, a priori known to be stable, from input output measurements corrup...
Set-membership identification of single-input single-output linear parameter varying models is consi...
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by tw...
The identification of Hammerstein models for nonlinear systems in considered in a worst-case setting...
In many practical situations, it is highly desirable to estimate an accurate mathematical model of a...
In this paper, we consider the identification of linear systems, a priori known to be stable, from i...
In many practical situations, it is highly desirable to estimate an accurate mathematical model of a...
The estimation of the Feasible Parameter Set (FPS) for Hammerstein models in a worst-case setting is...