International audienceWe propose an integro-differential description of the dynamics of the fitness distribution in an asexual population under mutation and selection, in the presence of a phenotype optimum. Due to the presence of this optimum, the distribution of mutation effects on fitness depends on the parent's fitness, leading to a non-standard equation with 'context-dependent' mutation kernels.Under general assumptions on the mutation kernels, which encompass the standard n − dimensional Gaussian Fisher's geometrical model (FGM), we prove that the equation admits a unique time-global solution. Furthermore, we derive a nonlocal nonlinear transport equation satisfied by the cumulant generating function of the fitness distribution. As th...