The use of surrogate modeling techniques to efficiently solve a single objective optimization (SOO) problem has proven its worth in the optimization community. However, industrial problems are often characterized by multiple conflicting and constrained objectives. Recently, a number of infill criteria have been formulated to solve multi-objective optimization (MOO) problems using surrogates and to determine the Pareto front. Nonetheless, to accurately resolve the front, a multitude of optimal points must be determined, making MOO problems by nature far more expensive than their SOO counterparts. As of yet, even though access to of high performance computing is widely available, little importance has been attributed to batch optimization and...