Digitalizace procesu detekce rakoviny v histopatologických snímcích je předmětem výzkumu posledních let a automatizovaná počítačová analýza založená na hlubokých neuronových sítích ukázala potenciální výhody jako diagnostická strategie. V této práci vyvíjíme metodu pro řešení úlohy automatické detekce metastáz v histologických snímcích lymfatických uzlin. Motivací jsou zejména tyto tři existující soutěže z histologické oblasti: soutěž v detekci rakoviny od Kaggle, CAMELYON16 a CAMELYON17. Nejdříve je vyvinuto základní řešení využívající architekturu ResNet-50 pro klasifikaci patchů, stejně jako je definováno v Kaggle soutěži. Toto řešení je poté rozšířeno a metoda je vylepšena tak, aby prováděla segmentaci nádorů. Navrhujeme použití archite...