CD in non-integer d=4-2 epsilon space-time dimensions possesses a nontrivial critical point and enjoys exact scale and conformal invariance. This symmetry imposes nontrivial restrictions on the form of the renormalization group equations for composite operators in physical (integer) dimensions and allows to reconstruct full kernels from their eigenvalues (anomalous dimensions). We use this technique to derive two-loop evolution equations for flavor-nonsinglet quark-antiquark light-ray operators that encode the scale dependence of generalized hadron parton distributions and light-cone distribution amplitudes in the most compact form
QCD evolution equations in MS-like schemes can be recovered from the same equations in a modified th...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...
CD in non-integer d=4-2 epsilon space-time dimensions possesses a nontrivial critical point and enjo...
CD in non-integer d=4-2 epsilon space-time dimensions possesses a nontrivial critical point and enjo...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer <math altimg="si1.gif" xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=...
QCD in non-integer <math altimg="si1.gif" xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=...
QCD in non-integer $d=4-2\epsilon$ space-time dimensions enjoys conformal invariance at the special ...
QCD in non-integer $d=4-2\epsilon$ space-time dimensions enjoys conformal invariance at the special ...
Abstract QCD in non-integer d = 4 − 2ϵ space-time dimensions enjoys conformal invariance at the spec...
QCD in non-integer d = 4 - 2E space-time dimensions enjoys conformal invariance at the special fine-...
QCD in non-integer d = 4 - 2E space-time dimensions enjoys conformal invariance at the special fine-...
QCD evolution equations in MS-like schemes can be recovered from the same equations in a modified th...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...
CD in non-integer d=4-2 epsilon space-time dimensions possesses a nontrivial critical point and enjo...
CD in non-integer d=4-2 epsilon space-time dimensions possesses a nontrivial critical point and enjo...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer d=4−2ϵ space–time dimensions possesses a nontrivial critical point and enjoys exa...
QCD in non-integer <math altimg="si1.gif" xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=...
QCD in non-integer <math altimg="si1.gif" xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=...
QCD in non-integer $d=4-2\epsilon$ space-time dimensions enjoys conformal invariance at the special ...
QCD in non-integer $d=4-2\epsilon$ space-time dimensions enjoys conformal invariance at the special ...
Abstract QCD in non-integer d = 4 − 2ϵ space-time dimensions enjoys conformal invariance at the spec...
QCD in non-integer d = 4 - 2E space-time dimensions enjoys conformal invariance at the special fine-...
QCD in non-integer d = 4 - 2E space-time dimensions enjoys conformal invariance at the special fine-...
QCD evolution equations in MS-like schemes can be recovered from the same equations in a modified th...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...
QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct thr...