The objective of this thesis is to explore the improvements achieved through using classical filtering methods with Artificial Neural Network (ANN) for pedestrian navigation techniques. ANN have been improving dramatically in their ability to approximate various functions. These neural network solutions have been able to surpass many classical navigation techniques. However, research using ANN to solve problems appears to be solely focused on the ability of neural networks alone. The combination of ANN with classical filtering methods has the potential to bring beneficial aspects of both techniques to increase accuracy in many different applications. Pedestrian navigation is used as a medium to explore this process using a localization and ...