Der Deflexionswert ist ein wesentlicher Indikator für die Restlebensdauer flexibler Straßenbefestigungen, der mit einem Falling Weight Deflectometer (FWD) gemessen wird. Obwohl das FWD ein beliebtes Gerät für die Planung von Erhaltungsmaßnahmen ist, ist diese Methode in großem Umfang verwendet zeitaufwändig und ressourcenintensiv. Um diese Einschränkungen zu überwinden und die Methode zu verbessern, zielt diese Studie darauf ab, einen Ansatz mit einem künstlichen neuronalen Netzwerk (KNN) zu entwickeln, um die Deflexion an jedem beliebigen Punkt der gesamten Strecke zu berechnen, um experimentelle FWD-Messungen zu ergänzen und zu ersetzen. Es wird ein Feed-Forward KNN-Modell in der MATLAB® Programmierumgebung entwickelt basierend auf der Rü...
4noEstablishing the structural integrity of an airport pavement is crucial to assess its remaining l...
This paper focuses on the development of backcalculation models based on artificial neural networks ...
Artificial neural networks (ANNs) were used in this paper to develop an improved and more accurate a...
Der Deflexionswert ist ein wesentlicher Indikator für die Restlebensdauer flexibler Straßenbefestigu...
The falling weight deflectometer (FWD) test is a widely used nondestructive test for assessing the s...
The measurements obtained with the falling weight deflectometer are typically used in a linear-stati...
Efficient management of road infrastructure involves planning, construction, maintenance, operation ...
The subgrade resilient modulus is an important parameter in pavement analysis and design. However, a...
Artificial Neural Networks (ANN) are introduced in this paper with an example application given demo...
Backcalculation analysis of pavement layer moduli is typically conducted based on Falling Weight Def...
Pavement structures are assessed based on its functional and structural capacity in order to evaluat...
Routine pavement maintenance necessitates present structural diagnosis and condition evaluation of p...
The falling weight deflectometer (FWD) is a non-destructive test equipment used to assess the struct...
This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer mod...
Este trabalho apresenta um procedimento para auxiliar na determinação da vida útil de pavimentos fle...
4noEstablishing the structural integrity of an airport pavement is crucial to assess its remaining l...
This paper focuses on the development of backcalculation models based on artificial neural networks ...
Artificial neural networks (ANNs) were used in this paper to develop an improved and more accurate a...
Der Deflexionswert ist ein wesentlicher Indikator für die Restlebensdauer flexibler Straßenbefestigu...
The falling weight deflectometer (FWD) test is a widely used nondestructive test for assessing the s...
The measurements obtained with the falling weight deflectometer are typically used in a linear-stati...
Efficient management of road infrastructure involves planning, construction, maintenance, operation ...
The subgrade resilient modulus is an important parameter in pavement analysis and design. However, a...
Artificial Neural Networks (ANN) are introduced in this paper with an example application given demo...
Backcalculation analysis of pavement layer moduli is typically conducted based on Falling Weight Def...
Pavement structures are assessed based on its functional and structural capacity in order to evaluat...
Routine pavement maintenance necessitates present structural diagnosis and condition evaluation of p...
The falling weight deflectometer (FWD) is a non-destructive test equipment used to assess the struct...
This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer mod...
Este trabalho apresenta um procedimento para auxiliar na determinação da vida útil de pavimentos fle...
4noEstablishing the structural integrity of an airport pavement is crucial to assess its remaining l...
This paper focuses on the development of backcalculation models based on artificial neural networks ...
Artificial neural networks (ANNs) were used in this paper to develop an improved and more accurate a...