Dlab V, Ringel CM. Balanced rings I. Carleton mathematical series. Vol 39. Ottawa: Carleton University, Dept. of Mathematics; 1971
Dlab V, Ringel CM. Représentations indécomposables des algèbres. Comptes rendus hebdomadaires des sé...
Ringel CM. Four papers on problems in linear algebra. In: Gelfand IM, ed. Representation theory. Sel...
Let M be a left module over a ring R. Then M can be regarded as a right C-module, where C=End(RM) is...
Dlab V, Ringel CM. Balanced rings I. Carleton mathematical series. Vol 39. Ottawa: Carleton Universi...
Dlab V, Ringel CM. Balanced rings II. Carleton mathematical series. Vol 45. Ottawa: Dept. of Mathema...
Dlab V, Ringel CM. Balanced rings. In: Lectures on rings and modules. Lecture notes in mathematics ...
Dlab V, Ringel CM. A class of balanced non-uniserial rings. Mathematische Annalen. 1972;195(2):279-2...
Dlab V, Ringel CM. Balanced local rings with commutative residue fields. Bulletin of the American Ma...
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1970.Bibliography: leaf ...
Dlab V, Ringel CM. Exceptional rings. In: Kertész A, ed. Rings, modules, and radicals. International...
Ringel CM. Hall algebras. In: Balcerzyk S, ed. Topics in Algebra. 1: Rings and representations of al...
Ringel CM. Diagonalisierungspaare II. Mathematische Zeitschrift. 1971;122(1):10-32
Dlab V, Ringel CM. Anneaux balancés. Comptes rendus hebdomadaires des séances de l' Académie des Sci...
SIGLEAvailable from British Library Document Supply Centre- DSC:D86395 / BLDSC - British Library Doc...
Ringel CM. On radical square zero rings. Algebra and discrete mathematics. 2012;14(2):297-306
Dlab V, Ringel CM. Représentations indécomposables des algèbres. Comptes rendus hebdomadaires des sé...
Ringel CM. Four papers on problems in linear algebra. In: Gelfand IM, ed. Representation theory. Sel...
Let M be a left module over a ring R. Then M can be regarded as a right C-module, where C=End(RM) is...
Dlab V, Ringel CM. Balanced rings I. Carleton mathematical series. Vol 39. Ottawa: Carleton Universi...
Dlab V, Ringel CM. Balanced rings II. Carleton mathematical series. Vol 45. Ottawa: Dept. of Mathema...
Dlab V, Ringel CM. Balanced rings. In: Lectures on rings and modules. Lecture notes in mathematics ...
Dlab V, Ringel CM. A class of balanced non-uniserial rings. Mathematische Annalen. 1972;195(2):279-2...
Dlab V, Ringel CM. Balanced local rings with commutative residue fields. Bulletin of the American Ma...
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1970.Bibliography: leaf ...
Dlab V, Ringel CM. Exceptional rings. In: Kertész A, ed. Rings, modules, and radicals. International...
Ringel CM. Hall algebras. In: Balcerzyk S, ed. Topics in Algebra. 1: Rings and representations of al...
Ringel CM. Diagonalisierungspaare II. Mathematische Zeitschrift. 1971;122(1):10-32
Dlab V, Ringel CM. Anneaux balancés. Comptes rendus hebdomadaires des séances de l' Académie des Sci...
SIGLEAvailable from British Library Document Supply Centre- DSC:D86395 / BLDSC - British Library Doc...
Ringel CM. On radical square zero rings. Algebra and discrete mathematics. 2012;14(2):297-306
Dlab V, Ringel CM. Représentations indécomposables des algèbres. Comptes rendus hebdomadaires des sé...
Ringel CM. Four papers on problems in linear algebra. In: Gelfand IM, ed. Representation theory. Sel...
Let M be a left module over a ring R. Then M can be regarded as a right C-module, where C=End(RM) is...