Word embeddings are often used in natural language processing as a means to quantify relationships between words. More generally, these same word embedding techniques can be used to quantify relationships between features. In this paper, we conduct a series of experiments that are designed to determine the effectiveness of word embedding in the context of malware classification. First, we conduct experiments where hidden Markov models (HMM) are directly applied to opcode sequences. These results serve to establish a baseline for comparison with our subsequent word embedding experiments. We then experiment with word embedding vectors derived from HMMs— a technique that we refer to as HMM2Vec. In another set of experiments, we generate vector...