We explore the nonlinear variational modelling of two-dimensional (2D) crystal plasticity based on strain energies which are invariant under the full symmetry group of 2D lattices. We use a natural parameterization of strain space via the upper complex Poincaré half-plane. This transparently displays the constraints imposed by lattice symmetry on the energy landscape. Quasi-static energy minimization naturally induces bursty plastic flow and shape change in the crystal due to the underlying coordinated basin-hopping local strain activity. This is mediated by the nucleation, interaction, and annihilation of lattice defects occurring with no need for auxiliary hypotheses. Numerical simulations highlight the marked effect of symmetry on all ...