The problem of optimizing a nonlinear function of one or more variables in the sense of locating the values of the variables which give the greatest or least value of the function, is considered from two points of view. First, the development of two new and improved techniques for optimization is described. Second, the ways in which the available techniques can be applied are discussed with reference to case studies of practical significance. The two new techniques are for unconstrained optimization problems of a type which frequently occur in curve-fitting and modelling applications and also in the solution of sets of nonlinear equations. The first of these is a new two-part algorithm for minimizing a sum of squares objective function; it ...