International audienceExtending classical results of Nair and Tenenbaum, we provide general, sharp upper bounds for sums of the type u<mu+v x<nx+y F (Q 1 (m, n),. .. , Q k (m, n)) where x, y, u, v have comparable logarithms, F belongs to a class defined by a weak form of sub-multiplicativity, and the Q j are arbitrary binary forms. A specific feature of the results is that the bounds are uniform within the F-class and that, as in a recent version given by Henriot, the dependency with respect to the coefficients of the Q j is made explicit. These estimates play a crucial rôle in the proof, published separately by the authors, of Manin's conjecture for Châtelet surfaces., count of lattice points over algebraic varieties. Résumé. Généralisant ...
Dans la première partie de cette thèse, on présente des bornes supérieures fines pour le nombre de s...
In this thesis we study the generalisation of Roth’s theorem on three term arithmetic progressions t...
Abstract. In this paper we settle the long-standing question regarding the combinatorial complexity ...
International audienceWe prove Manin's conjecture, in the strong form conjectured by Peyre, for Chât...
40p.International audienceThis work falls within the theory of linear forms in logarithms over a com...
Dans cette thèse, nous étudions les conjectures de Manin et Peyre pour plusieursclasses de variétés ...
1. Let f (x1, x2, ..., xn) be a homogeneous form with real coefficients in n variables x1, x2, ..., ...
Estimating averages of Dirichlet convolutions1 * $X" , for some real Dirichlet character $X$ of fixe...
We study the number of representations of an integer n=F(x) by a homogeneous form in sufficiently ma...
La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n...
Let F(x) =F[x1,...,xn]∈ℤ[x1,...,xn] be a non-singular form of degree d≥2, and let N(F, X)=#{xεℤ n ;F...
International audienceLet u be a logarithm of an algebraic point p of an abelian variety defined ove...
In this thesis, we study the Manin and Peyre’s conjectures for several families of algebraic varieti...
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-par...
We consider multilinear Littlewood polynomials, polynomials in n variables in which a specified set ...
Dans la première partie de cette thèse, on présente des bornes supérieures fines pour le nombre de s...
In this thesis we study the generalisation of Roth’s theorem on three term arithmetic progressions t...
Abstract. In this paper we settle the long-standing question regarding the combinatorial complexity ...
International audienceWe prove Manin's conjecture, in the strong form conjectured by Peyre, for Chât...
40p.International audienceThis work falls within the theory of linear forms in logarithms over a com...
Dans cette thèse, nous étudions les conjectures de Manin et Peyre pour plusieursclasses de variétés ...
1. Let f (x1, x2, ..., xn) be a homogeneous form with real coefficients in n variables x1, x2, ..., ...
Estimating averages of Dirichlet convolutions1 * $X" , for some real Dirichlet character $X$ of fixe...
We study the number of representations of an integer n=F(x) by a homogeneous form in sufficiently ma...
La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n...
Let F(x) =F[x1,...,xn]∈ℤ[x1,...,xn] be a non-singular form of degree d≥2, and let N(F, X)=#{xεℤ n ;F...
International audienceLet u be a logarithm of an algebraic point p of an abelian variety defined ove...
In this thesis, we study the Manin and Peyre’s conjectures for several families of algebraic varieti...
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-par...
We consider multilinear Littlewood polynomials, polynomials in n variables in which a specified set ...
Dans la première partie de cette thèse, on présente des bornes supérieures fines pour le nombre de s...
In this thesis we study the generalisation of Roth’s theorem on three term arithmetic progressions t...
Abstract. In this paper we settle the long-standing question regarding the combinatorial complexity ...