With continued advances in science and technology, big graph (or network) data, such as World Wide Web, social networks, academic collaboration networks, transportation networks, telecommunication networks, biological networks, and electrical networks, have grown at an astonishing rate in terms of volume, variety, and velocity. Analyzing such big graph data has huge potential to reveal hidden insights and promote innovation in business, science, and engineering domains. However, there exist a number of challenging bottlenecks in developing advanced graph analytics tools in the Big Data era. This dissertation research focus on bridging graph mining and graph processing techniques to alleviate such bottlenecks in terms of both effectiveness a...