none6noThis paper presents a fully parametrized framework, entirely described in VHDL, to simplify the FPGA implementation of non-recurrent Artificial Neural Networks (ANNs), which works independently of the complexity of the networks in terms of number of neurons, layers and, to some extent, overall topology. More specifically, the network may consist of fully-connected, max-pooling or convolutional layers which can be arbitrarily combined. The ANN is used only for inference, while back-propagation is performed off-line during the ANN learning phase. Target of this work is to achieve fast-prototyping, small, low-power and cost-effective implementation of ANNs to be employed directly on the sensing nodes of IOT (i.e. Edge Computing). The pe...