Consider a fluid queue fed by $N$ on/off sources. It is assumed that the silence periods of the sources are exponentially distributed, whereas the activity periods are generally distributed. The inflow rate of each source, when active, is at least as large as the outflow rate of the buffer. We make two contributions to the performance analysis of this model. Firstly, we determine the Laplace-Stieltjes transforms of the distributions of the busy periods that start with an active period of source $i$, $i=1,dots,N$, as the unique solution in $[0,1]^N$ of a set of $N$ equations. Thus we also find the Laplace-Stieltjes transform of the distribution of an arbitrary busy period. Secondly, we relate the tail behaviour of the busy period distributio...